Spectral properties of Martian and other planetary glasses and their detection in remotely sensed data
نویسندگان
چکیده
Thirty silicate glasses were synthesized as realistic analogs to those expected to exist on Mars, the Moon, and Mercury. Samples were measured using visible/near-infrared and Mössbauer spectroscopy to determine the effects of varying bulk chemistry, oxygen fugacity, and temperature on spectral properties. For Martian glasses, the fO2 during fusion strongly affects absorption band intensities in the spectra, while bulk chemistry has noticeable secondary effects on absorption band positions. Titanium and iron content drive spectral changes in lunar glasses, where Fe is effectively absent. Iron-free Mercury analog glasses have much higher albedos than all other samples, and their spectral shape is a close match to some pyroclastic deposits on Mercury. Synthetic glass spectra were used as inputs into a spectral unmixing model applied to remote orbital datasets to test for the presence of glass. The model is validated against physical laboratory mixture spectra, as well as previous detections of glass-rich pyroclastic deposits on the Moon. Remote data were then used from suspected impact deposits and possible pyroclastic deposits on Mars as a new application of the model: the results reveal spatially coherent glass-rich material, and the strong spectral match of the synthetic glasses to these remotely sensed data gives new insights into the presence and character of glasses on the Martian surface. The large library of glass spectra generated here, acquired from consistently synthesized and measured samples, can serve as a resource for further studies of volcanic and impact processes on planetary bodies.
منابع مشابه
Investigation of the Role of New Glass Compositions in Remotely-sensed Martian
MARTIAN LITHOLOGIES. M.E. Minitti, V.E. Hamilton and M.B. Wyatt, Center for Meteorite Studies, Arizona State University, Tempe, AZ 85287-1404 ([email protected]), Hawai'i Institute of Geophysics and Planetology, University of Hawai'i, Honolulu, HI 96822, Department of Geological Sciences, Arizona State University, Tempe, AZ 85287-1404. Introduction: Mineralogical and spectral data from multiple s...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملSpatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets
The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 t...
متن کاملSpatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017